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Experimental Setup

The experiments were designed to evaluate the 
effectiveness of our neural network simplification method 

in generating interpretable and policy-aligned 
explanations. We compared our method against three 
baseline approaches: Greedy pruning and two top-k 
methods (top-3 and top-5).

INTRODUCTION

Black-box nature of neural networks: While 
learning-based methods have advanced robot decision-
making and control, their lack of interpretability raises 
concerns for safety-critical applications like 
autonomous vehicles. 

Need for explainability: Formal methods, such as 
Weighted Signal Temporal Logic (wSTL), offer a 
structured way to interpret robot policies by prioritizing 
constraints based on importance.

Limitations of existing approaches: Current 
methods mainly classify trajectories rather than explain 
the underlying policy behavior, often producing overly 
complex and hard-to-interpret explanations.

Contribution
• Develop a neuro-symbolic method to generate 

concise, interpretable wSTL explanations for 
robotic policies. 

• Introduce a simplification process (predicate 
filtering, regularization, pruning) to improve clarity 
without sacrificing accuracy.

• Propose new evaluation metrics—conciseness, 
consistency, and strictness—to better assess 
explanation quality. 

• Demonstrate the effectiveness of our approach in 
three robotics environments with diverse 
challenges.

METHOD

RESULTS

ANALYSIS

Baseline Comparisons
• Our method achieved higher mean accuracy with 

shorter explanation lengths.
• Lower variance in explanation quality across scenarios.
• Exception: "roomba" scenario due to suboptimal 

policy.

Qualitative Analysis
• Our method: Successfully inferred both task (ℱ) and 

constraint (𝒢) clauses.
• Top-k methods: Only inferred either task OR 

constraint, not both.
• Greedy method: Generated overly complex 

explanations.

Environment-Specific Insights
• CtF scenarios: Captured core task of flag capture and 

enemy behaviors.
• Fetch push: Correctly inferred block-target 

relationship.
• Robot navigation: Accurately captured goal-

reaching while avoiding chaser.

Quantitative Results
• Conciseness: Up to 1.9× improvement.
• Consistency: Up to 2.6× improvement.
• Strictness: Up to 2.7× improvement.

Limitations
• Approximated min/max functions affected constraint 

inference.
• Binary classification approach limited detection of 

rarely violated constraints in the positive and negative 
trajectories.

CONCLUSIONS

• Developed a neuro-symbolic framework for 
wSTL-based policy explanations. 

• Improved conciseness and interpretability using 
predicate filtering, regularization, and pruning. 

• Outperformed baselines in seven robotics 
scenarios with accurate, interpretable explanations. 

• Limitation: approximated min/max functions, 
inferring a constraint with identical distributions.

• Future directions: higher-order wSTL, human-in-
the-loop refinement, real-world applications.

Fig 2. Capture-the-Flag Fig 4. Chased Robot 
Navigation

Fig 3.Obstructed Fetch 
Push

Table II. Baseline Comparison of Evaluation Metrics

We tested all approaches across 
seven scenarios in three 
distinct environments.

Table I. Baseline Comparison of Representative Generated Explanations

Predicate Filter: 
• Removes predicates with similar trajectory distributions in 

positive and negative trajectories
• Uses a trajectory distribution vector (ratio of all-positive, 

mixed, all-negative robustness values).
• Applies cosine similarity as the metric and removes 

predicates above a user-provided threshold.

Regularization: 
• Introduces two complementary regularizers to improve 

neural network optimization: 
• Temporal Clause Regularizer: Enforces different 

conjunctive structures between eventual and global clauses.
• Disjunctive Clause Regularizer: Forces different 

structures between disjunctive clauses within both temporal 
clauses.

• Both regularizers are added to the loss function with 
adjustable weights (𝜆).

Weight Pruning: 
• Two-step process to simplify the network: 
• First prunes weights with zero values (ensuring they remain 

zero).

• Then removes the smallest N weights specified by the user.
• Eliminates least contributing weights from the optimization 

process. Fig 1. Neural Network Architecture for Two Predicates

Neural Network Architecture:
• Designed to match with the following explanation format:
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