Neuro-Symbolic Generation of Explanations for Robot Policies with Weighted Signal Temporal Logic

Mikihisa Yuasa¹, Ramavarapu S. Sreenivas², and Huy T. Tran¹

¹Department of Aerospace Engineering / ²Department of Industrial & Enterprise Systems Engineering, The Grainger College of Engineering, University of Illinois Urbana-Champaign

INTRODUCTION

Black-box nature of neural networks: While learning-based methods have advanced robot decision-making and control, their lack of interpretability raises concerns for safety-critical applications like autonomous vehicles.

Need for explainability: Formal methods, such as Weighted Signal Temporal Logic (wSTL), offer a structured way to interpret robot policies by prioritizing constraints based on importance.

Limitations of existing approaches: Current methods mainly classify trajectories rather than explain the underlying policy behavior, often producing overly complex and hard-to-interpret explanations.

Contribution

- Develop a **neuro-symbolic method** to generate **concise, interpretable** wSTL explanations for robotic policies.
- Introduce a **simplification process** (predicate filtering, regularization, pruning) to improve clarity without sacrificing accuracy.
- Propose new evaluation metrics—conciseness, consistency, and strictness—to better assess explanation quality.
- Demonstrate the effectiveness of our approach in **three robotics environments** with diverse challenges.

The experiments were designed to evaluate the

in generating interpretable and policy-aligned

effectiveness of our neural network simplification method

baseline approaches: Greedy pruning and two top-k

Grip

explanations. We compared our method against three

METHOD

Predicate Filter:

- Removes predicates with similar trajectory distributions in positive and negative trajectories
- Uses a trajectory distribution vector (ratio of all-positive, mixed, all-negative robustness values).
- Applies cosine similarity as the metric and removes predicates above a user-provided threshold.

Regularization:

- Introduces two complementary regularizers to improve neural network optimization:
- Temporal Clause Regularizer: Enforces different conjunctive structures between eventual and global clauses.
- **Disjunctive Clause Regularizer**: Forces different structures between disjunctive clauses within both temporal clauses.
- Both regularizers are added to the loss function with adjustable weights (λ).

Weight Pruning:

- Two-step process to simplify the network:
- First prunes weights with zero values (ensuring they remain zero).
- Then removes the smallest N weights specified by the user.
- Eliminates least contributing weights from the optimization process.

Neural Network Architecture:

Designed to match with the following explanation format:

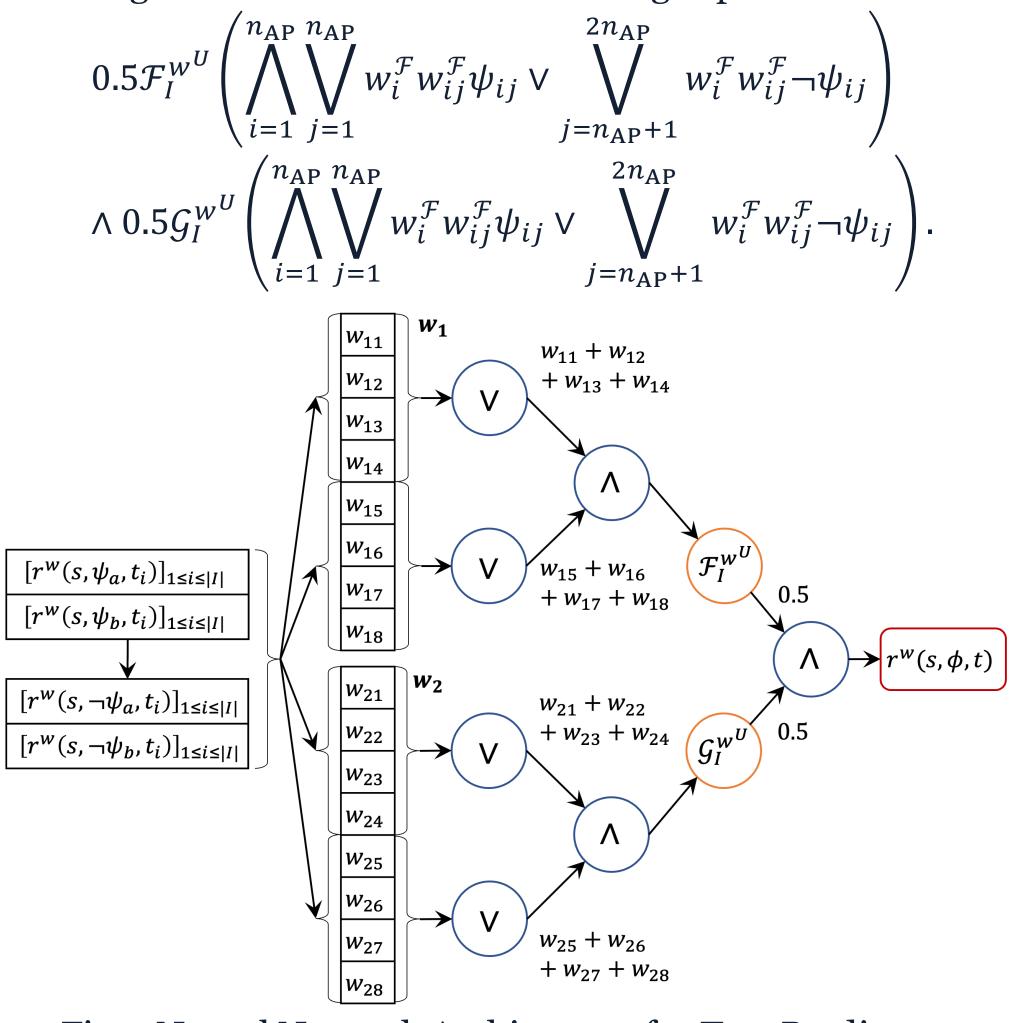


Fig 1. Neural Network Architecture for Two Predicates

RESULTS

Table I. Baseline Comparison of Representative Generated Explanations

Scenarios	Ours	Greedy	Top-3	Top-5
CtF Capture	$0.5\mathcal{F}[1.0\psi_{\mathrm{ba,rf}}] \land 0.5\mathcal{G}[0.30\psi_{\mathrm{ba,rf}} \lor 0.70 \neg \psi_{\mathrm{ra,bf}}]$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\mathcal{F}[0.73\neg\psi_{\rm ra,bt} \\ \land 0.27\neg\psi_{\rm ba,bt}]$	$\mathcal{F}[0.83\neg\psi_{\mathrm{ra,bt}}\\ \land 0.17\psi_{\mathrm{ba,rf}}]$
CtF Capture 0	$\begin{vmatrix} 0.5\mathcal{F}[1.0\psi_{\mathrm{ba,rf}}] \land \\ 0.5\mathcal{G}[0.31\psi_{\mathrm{ba,rf}} \lor 0.69 \neg \psi_{\mathrm{ra,bf}}] \end{vmatrix}$	$ \begin{vmatrix} 0.5\mathcal{F}[0.08\psi_{\rm ba,rf} \wedge (0.40\psi_{\rm ba,rf} \vee 0.31\neg\psi_{\rm ra,bt}) \wedge \\ (0.07\neg\psi_{\rm ba,bt} \vee 0.14\neg\psi_{\rm ra,bt})] \wedge 0.5\mathcal{G}[(0.33\psi_{\rm ba,rf} \vee 0.58\neg\psi_{\rm ra,bf}) \wedge (0.05\psi_{\rm ba,rf} \vee 0.04\neg\psi_{\rm ra,bt})] \end{vmatrix} $	$\mathcal{F}[0.67\neg\psi_{\mathrm{ra,bt}} \\ \land 0.33\neg\psi_{\mathrm{ba,bt}}]$	$\mathcal{F}[0.83\neg\psi_{\mathrm{ra,bt}}\\ \land 0.17\psi_{\mathrm{ba,rf}}]$
CtF Fight	$\begin{array}{c} 0.5\mathcal{F}[1.0\psi_{\mathrm{ba,rf}}] \land \\ 0.5\mathcal{G}[0.33\psi_{\mathrm{ba,rf}} \lor 0.67 \neg \psi_{\mathrm{ba,ra}}] \end{array}$	$ \begin{array}{c c} 0.5\mathcal{F}[0.77\psi_{\rm ba,rf} \wedge (0.15\psi_{\rm ba,rf} \vee 0.08\psi_{\rm ra,bf})] \wedge \\ 0.5\mathcal{G}[(0.15\neg\psi_{\rm ba,bt} \vee 0.11\neg\psi_{\rm ra,df}) \wedge 0.06\psi_{\rm ba,rf} \\ \vee 0.04\neg\psi_{\rm ra,df}) \wedge (0.06\psi_{\rm ba,rf} \vee 0.06\neg\psi_{\rm ba,bt} \vee \\ 0.04\neg\psi_{\rm ra,df}) \wedge (0.02\psi_{\rm ba,ra} \vee 0.19\psi_{\rm ba,rf} \vee \\ 0.16\neg\psi_{\rm ba,bt} \vee 0.11\neg\psi_{\rm ra,df})] \end{array} $	${\cal F}[1.0\psi_{ m ba,rf}]$	$\mathcal{F}[1.0\psi_{\mathrm{ba,rf}}]$
CtF Patrol	$\begin{array}{c} 0.5\mathcal{F}[1.0\psi_{\mathrm{ba,rf}}] \land \\ 0.5\mathcal{G}[0.52\psi_{\mathrm{ba,rf}} \lor 0.48 \neg \psi_{\mathrm{ra,bt}}] \end{array}$	$ \begin{vmatrix} 0.5\mathcal{F}[0.35\psi_{\mathrm{ba,rf}} \wedge (0.09\psi_{\mathrm{ba,rf}} \vee 0.55\psi_{\mathrm{ra,df}})] \wedge \\ 0.5\mathcal{G}[(0.29\psi_{\mathrm{ba,rf}} \vee 0.04\psi_{\mathrm{ra,bf}} \vee 0.07\neg\psi_{\mathrm{ra,df}}) \wedge \\ (0.30\psi_{\mathrm{ba,rf}} \vee 0.19\psi_{\mathrm{ra,bf}} \vee 0.02\neg\psi_{\mathrm{ba,bt}}) \wedge \\ 0.04\psi_{\mathrm{ra,bf}} \wedge 0.05\neg\psi_{\mathrm{ra,bf}}] \end{vmatrix} $	${\cal F}[1.0\psi_{ m ra,df}]$	${\cal F}[1.0\psi_{ m ra,df}]$
CtF Roomba	$0.5\mathcal{F}[1.0\psi_{\mathrm{ba,rf}}] \land 0.5\mathcal{G}[0.35\psi_{\mathrm{ba,rf}} \lor 0.65 \neg \psi_{\mathrm{ra,bf}}]$	$ \begin{vmatrix} 0.5\mathcal{F}[1.0\psi_{\mathrm{ba,rf}}] \wedge 0.5\mathcal{G}[0.21\neg\psi_{\mathrm{ra,bf}} \wedge 0.47\psi_{\mathrm{ba,rf}} \\ \wedge (0.04\neg\psi_{\mathrm{ra,bf}} \vee 0.05\neg\psi_{\mathrm{ra,df}}) \wedge (0.18\psi_{\mathrm{ba,rf}} \vee \\ 0.03\psi_{\mathrm{ra,df}} \vee 0.04\neg\psi_{\mathrm{ra,bf}} \vee 0.02\neg\psi_{\mathrm{ra,bt}}) \end{vmatrix} $	$\mathcal{F}[1.0\psi_{ m ba,bt}]$	$\mathcal{F}[0.48\neg\psi_{\mathrm{ba,bt}} \\ \land 0.52\psi_{\mathrm{ba,rf}}]$
Fetch Push	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c c} 0.5\mathcal{F}[0.74\psi_{\mathrm{bt}} \wedge (0.10\psi_{\mathrm{bt}} \vee 0.16\psi_{\mathrm{od}})] \wedge \\ 0.5\mathcal{G}[1.0\neg\psi_{\mathrm{bd}}] \end{array}$	$\mathcal{G}[1.0\psi_{ m bt}]$	$\mathcal{G}[1.0\psi_{ m bt}]$
Robot Navi.	$0.5\mathcal{F}[1.0\psi_{ m eg}] \wedge 0.5\mathcal{G}[1.0\neg\psi_{ m ec}]$	$\mathcal{F}[1.0\psi_{ m eg}]$	$\mathcal{F}[1.0\psi_{ m eg}]$	$\mathcal{F}[1.0\psi_{ m eg}]$

Table II. Baseline Comparison of Evaluation Metrics

ictness		
Strictness		
Top-3	Top-5	
0.083	0.125	
0.150	0.242	
0.500	0.500	
0.500	0.525	
0.100	0.088	
0.500	0.500	
0.500	0.500	
3	0.083 0.150 0.500 0.500 0.100 0.500	

ANALYSIS

Baseline Comparisons

- Our method achieved higher mean accuracy with shorter explanation lengths.
- Lower variance in explanation quality across scenarios.
- Exception: "roomba" scenario due to suboptimal policy.

Qualitative Analysis

- Our method: Successfully inferred both task (\mathcal{F}) and constraint (\mathcal{G}) clauses.
- **Top-k methods**: Only inferred either task OR constraint, not both.
- **Greedy method**: Generated overly complex explanations.

Environment-Specific Insights

- **CtF scenarios**: Captured core task of flag capture and enemy behaviors.
- **Fetch push**: Correctly inferred block-target relationship.
- **Robot navigation**: Accurately captured goal-reaching while avoiding chaser.

Quantitative Results

- **Conciseness**: Up to 1.9 × improvement.
- **Consistency**: Up to 2.6 × improvement.
- **Strictness**: Up to 2.7 × improvement.

Limitations

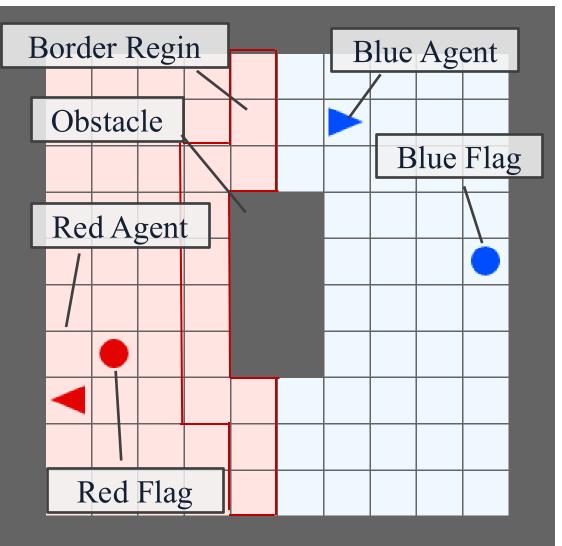
- Approximated min/max functions affected constraint inference.
- Binary classification approach limited detection of rarely violated constraints in the positive and negative trajectories.

CONCLUSIONS

- Developed a **neuro-symbolic framework** for wSTL-based policy explanations.
- Improved **conciseness** and **interpretability** using predicate filtering, regularization, and pruning.
- Outperformed baselines in **seven robotics scenarios** with accurate, interpretable explanations.
- Limitation: approximated min/max functions, inferring a constraint with identical distributions.
- Future directions: higher-order wSTL, human-in-the-loop refinement, real-world applications.

ACKNOWLEDGEMENTS

This work was supported in part by ONR grant and JASSO Study Abroad Fellowship Program (Graduate Degree Program).



Experimental Setup

methods (top-3 and top-5).

seven scenarios in three

distinct environments.

We tested all approaches across

Fig 2. Capture-the-Flag

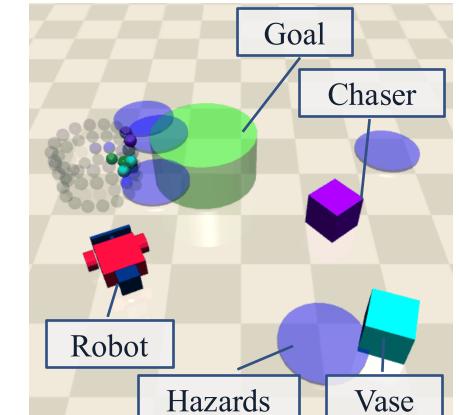


Fig 4. Chased Robot

Navigation

Block Goal

Fig 3.Obstructed Fetch

Obstacle