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Experimental Setup

We tested our method in three distinct simulated 
environments.

INTRODUCTION

Black-box nature of neural networks: While 
learning-based methods have advanced robot decision-
making and control, their lack of interpretability raises 
concerns for safety-critical applications like 
autonomous vehicles. 

Need for explainability: Formal methods, such as 
Linear Temporal Logic (LTL), offer a structured way 
to interpret robot policies by prioritizing constraints 
based on importance.

Limitations of existing approaches
Existing approaches typically learn from a fixed set of 
example trajectories. This makes them highly dependent 
on the provided data and unable to access the policy's 
internal logic, such as its preference or certainty for 
actions in unobserved states.

Contribution
• Introduce a novel method that overcomes these

limitations by assuming direct access to the target
policy itself.

• Automatically find an explanation in the form of a
Linear Temporal Logic (LTL) formula.

Key Idea
Compare the action distributions of the target policy 
with policies explicitly optimized for candidate LTL 
formulas, allowing for a more nuanced evaluation 
that captures the agent's underlying intent.

METHOD

RESULTS

ANALYSIS

Our method successfully recovered the underlying 
objectives of the target policies.

Ground-Truth Recovery: In the CtF, Parking, and 
Robot Navigation environments, where the target 
policy was trained on a known LTL formula, our search 
successfully identified the exact ground-truth 
formula as the best explanation.

Plausible Explanations: For the Robot Navigation 
task with a non-LTL target policy, our method found a 
reasonable explanation: "Eventually, the robot reaches 
the goal or does not hit the vase. Globally, the robot does 
not enter a hazard." This captures both the primary goal 

and the learned safety behavior.

Ablation Study: Removing any key component of our 
method (the search extension heuristics or the wKL 
weighting) caused the search to fail, confirming the 
importance of each part of the algorithm.

CONCLUSIONS

We have developed a robust method for generating LTL 
explanations of RL policies by comparing action 
distributions. This approach provides deeper insight into 
an agent's learned behavior than existing methods.

Limitations & Future Directions:

Scalability: The search is computationally intensive. 
Future work could explore neural network 
representations of LTL to improve efficiency.

Predicate Definition: The method currently requires 
user-defined predicates. Automating predicate discovery 
is a key next step.

Natural Language: Translating the final LTL formula 
into natural language would further improve 
interpretability.

Fig 2. Capture-the-Flag (CtF)

Fig 4. Robot NavigationFig 3. Adversarial Parking

Table II. Robot Navigation Results for LTL (left) & Non-LTL (right) Target Policies. 

Table I.  CtF & Parking Results. 
Target policies were successfully found in Searches 1 & 2 (CtF) and 1, 2, & 3 (Parking).

We frame the problem as a search for the LTL formula that 
produces a policy most similar to the target policy (𝜋tar).

Explanation Structure

We define explanations as LTL formulas with a specific 
structure, capturing both a goal and a safety constraint:  

𝜙 = ℱ 𝜙𝐹 ∧ 𝒢 𝜙𝐺 .

• ℱ(𝜙𝐹): “Eventually, achieve some task 𝜙𝐹.”

• 𝒢 𝜙𝐺 : “Globally, always satisfy some safety constraint 𝜙𝐺.”

• 𝜙𝐹 and 𝜙𝐺  are logical combinations of user-defined atomic
predicates (e.g., distance_to_goal < 1).

Evaluation Metric: Weighted KL Divergence 

How do we measure similarity? We compare the policies' action 
distributions (𝜋 𝑎 𝑠 ) in key states.

• Utility Score (𝑈𝜙):  We calculate the weighted Kullback-
Leibler (wKL) divergence between distributions of the
target policy and a candidate policy:

𝑈𝜙 = −෍

𝑠

𝑤𝑠 𝐷KL 𝜋𝜙 ⋅ 𝑠 ∥ 𝜋tar ⋅ |𝑠 .

• Weighting (𝑤𝑠):  The weights emphasize states where the
target policy is most certain about its action, as these are the
most informative states for understanding its intent.

• Benefit: This avoids trivial "catch-all" explanations (e.g.,
“eventually do anything”) that might be satisfied by
trajectories but do not capture the policy's specific logic. Fig 1. Overview of our proposed search algorithm.

The Search Algorithm

We employ a greedy local-search algorithm to navigate 
the space of possible LTL explanations.
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CtF: Capture the red flag 
while avoidng the red 
agent.

Parking: Park in a 
designated spot while 
avoiding walls and 
another car. 

Robot Nav.: Navigate to a 
goal while avoiding 
hazards.
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